Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2109.08660v5

ABSTRACT

The potential waning of the vaccination immunity to COVID-19 could pose threats to public health, as it is tenable that the timing of such waning would synchronize with the near-complete restoration of normalcy. Should also testing be relaxed, we might witness a resurgent COVID-19 wave in winter 2021/2022. In response to this risk, an additional vaccine dose, the booster shot, is being administered worldwide. In a projected study with an outlook of six months, we explore the interplay between the rate at which boosters are distributed and the extent to which testing practices are implemented, using a highly granular agent-based model tuned on a medium-sized U.S. town. Theoretical projections indicate that the administration of boosters at the rate at which the vaccine is currently administered could yield a severe resurgence of the pandemic. Projections suggest that the peak levels of mid spring 2021 in the vaccination rate may prevent such a scenario to occur, although exact agreement between observations and projections should not be expected due to continuously evolving nature of the pandemics. Our study highlights the importance of testing, especially to detect asymptomatic individuals in the near future, as the release of the booster reaches full speed.


Subject(s)
COVID-19
2.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2101.05171v3

ABSTRACT

Amid the ongoing COVID-19 pandemic, public health authorities and the general population are striving to achieve a balance between safety and normalcy. Ever changing conditions call for the development of theory and simulation tools to finely describe multiple strata of society while supporting the evaluation of "what-if" scenarios. Particularly important is to assess the effectiveness of potential testing approaches and vaccination strategies. Here, an agent-based modeling platform is proposed to simulate the spreading of COVID-19 in small towns and cities, with a single-individual resolution. The platform is validated on real data from New Rochelle, NY -- one of the first outbreaks registered in the United States. Supported by expert knowledge and informed by reported data, the model incorporates detailed elements of the spreading within a statistically realistic population. Along with pertinent functionality such as testing, treatment, and vaccination options, the model accounts for the burden of other illnesses with symptoms similar to COVID-19. Unique to the model is the possibility to explore different testing approaches -- in hospitals or drive-through facilities -- and vaccination strategies that could prioritize vulnerable groups. Decision making by public authorities could benefit from the model, for its fine-grain resolution, open-source nature, and wide range of features.


Subject(s)
COVID-19
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2010.05968v3

ABSTRACT

To date, the only effective means to respond to the spreading of COVID-19 pandemic are non-pharmaceutical interventions (NPIs), which entail policies to reduce social activity and mobility restrictions. Quantifying their effect is difficult, but it is key to reduce their social and economical consequences. Here, we introduce a meta-population model based on temporal networks, calibrated on the COVID-19 outbreak data in Italy and apt to evaluate the outcomes of these two types of NPIs. Our approach combines the advantages of granular spatial modelling of meta-population models with the ability to realistically describe social contacts via activity-driven networks. We provide a valuable framework to assess the viability of different NPIs, varying with respect to their timing and severity. Results suggest that the effects of mobility restrictions largely depend on the possibility to implement timely NPIs in the early phases of the outbreak, whereas activity reduction policies should be prioritised afterwards.


Subject(s)
COVID-19
4.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2008.01971v2

ABSTRACT

The outcome of an epidemic outbreak can be critically shaped by the collective behavioural response of the population. Likewise, individual decision-making is highly influenced by the overwhelming pressure of epidemic spreading. However, existing models lack the ability to capture this complex interdependence over the entire course of the epidemic. We introduce a novel parsimonious network model, grounded in evolutionary game theory, in which decision-making and epidemics co-evolve, shaped by an interplay of factors mapped onto a minimal set of model parameters ---including government-mandated interventions, socio-economic costs, perceived infection risks and social influences. This interplay gives rise to a range of characteristic phenomena that can be captured within this general framework, such as sustained periodic outbreaks, multiple epidemic waves, or prompt behavioural response ensuring a successful eradication of the disease. The model's potentialities are demonstrated by three case studies based on real-world gonorrhoea, 1918--19 Spanish flu and COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL